
above which the low-frequency oscillation will dominate, we can take Ro, = c/~R (c is the 
maximum phase velocity of the axisymmetric wave: c = 0.52wR [4]). 

The experimental results show that the vortices were created by the normal inertial os- 
cillations, as in [i]. The only difference is that in [i] the oscillation was excited by 
resonant "pumping" of effectively a single mode, whereas the flow generated after pulling 
bodies through the rotating liquid in general has the features of a large number of modes 
differing in geometry and frequency. This was graphically shown by experiments in which 
disks of diameter 5 and i0 cm were pulled along the axis of the container at large Ro. A 
sharply defined beat was observed at the cyclone vortex generated in the region near the axis. 
The experimental frequency ~ was close to half the sum of the frequencies of the modes (0, i, 
i) and (0, 2, i) and was lower than for a disk of diameter 7 cm. 

Finally we note that, for the intervals of the parameters studied in our experiments, 
the flow field did not depend on Re. 
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VARIOUS APPROXIMATIONS IN THE THEORY OF CAVITATION FLOWS 

OF A VISCOUS CAPILLARY FLUID 

E. L. Amromin, A. V. Vasil'ev, and V. V. Droblenkov 

The purpose of calculating cavitation flows is usually the search of cavity sizes and 
pressure distributions over streamlined bodies. Most of these calculations are carried out 
within mechanics of an ideal fluid. However, a number of experimental facts - the presence 
of a separation boundary layer [i] and a dilatation zone [2] on the body in front of the 
cavity, the effect of body sizes and its stream velocity on hydrodynamic reactions, cavity 
sizes [3, 4], and even their existence - require study of the effect of the viscosity of the 
fluid and its surface tension on cavitation streamline flows of various types. 

The pressure diagram for a body with a cavity is determined by the external inviscid 
flow. The presence of viscosity leads to substantial deviation of the current line from the 
surfaces of the body and the cavity in three zones: in front of the cavity, behind it, and 
near the intake extremity of the body. The pressure diagram at the body within these zones 
also differs substantially from the pressure diagram at a body with a cavity in an ideal 
fluid. The feature flows in the first two zones are illustrated by Fig. i: curves 1 and 2 
are the cavity boundaries in an ideal and in a viscous capillary fluid for the same ~ value 
- the cavitation number; 3 and 4 are the corresponding calculated pressure diagram coeffi- 
cient Cp.at the streamline of a body with a cap [i], part of whose meridional cross section 
contour is illustrated by curve 5; o = 2(p~ -Pc)p-IV~-2; C~ = 2(p - p~)p-iV~-2; p is the 
fluid density, V~ is the flow velocity; p~ is the pressure in it; and Pc and p are the pres- 
sures in the cavity and at an arbitrary point of the boundary between the inviscid and vis- 
cous flows. Curves i-4 are the calculated ones, with o = 0.36. For an ideal fluid the cal- 
culations were carried out by using the generalized Ryabushinskii scheme with closure of the 
cavity frequency at the edge (whose meridional cross section is illustrated by segment 6), 
as was done numerically in [3]. For a viscous capillary fluid the calculations were carried 
out by the method used in [5] for values of the Reynolds number Re = i0 ~ and a Weber number 
We = 2-i0 s for vanishing value of the boundary angle, i.e., for an absolutely wettable body; 
Re and We = pV~2D7 -I are constructed by the same characteristic size D (the diameter of a 
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body of revolution or the chord length for the profile), ~ is the surface tension coeffi- 
cient at the boundary between the fluid and the gas, x 0 is the abscissa of the opening zone 
ahead of the cavity, and xl and x 2 are the abscissas of the opening and rear of the cavity. 

The first zone of aviscous- inviscid interation is formed by the simultaneous effect 
of viscosity and surface tension. A cavity in a real fluid has a nonvanishing width at the 
line attached to the body, and, similarly, generates a break in the boundary layer ahead of 
it. 

The second zone precedes the boundary layer associated with the body: at its end the 
cavity has a nonvanishing thickness too, which is related to the presence of an opposite 
stream at the edge of the real cavity. In the scheme described here it has been taken into 
account that the real cavity located inside the boundary layer is penetrable for the fluid. 
Therefore, the fluid flow averaged over time is directed inside the cavity at the rear 
part of its boundary (propagating from point A on curve 2 to the wall) and from the cavity 
through the remaining portion of the boundary (as shown by arrows in Fig. I). This flow in- 
side the boundary layer does not change the conditions at the boundary between them and the 
external inviscid flow, and does not lead to violation of the mass conservation law for flow 
as a whole. 

The third zone of strong viscous-inviscid interaction near the stern of the body is in- 
vestigated neither in [5] nor in the present study. It also exists in cavitationless flows 
[6], its effect on cavitation can be indirect, and is primarily manifested in terms of vari- 
ations in the pressure and buoyant force distributions. 

Calculations of cavitation flows of a viscous fluid involve both substantial computa- 
tional difficulties and the necessity of using semiempirical dependences, sometimes based on 
very few experiments and on long successive estimates. Therefore, it is important to verify 
the simplified schemes and the methods of calculating cavitation streamline flows of a vis- 
cous fluid. 

The purpose of the present study is analysis of the latter simplifications, related to 
incomplete account of the viscous-inviscid interaction and to the assumption of a thin cavity. 
The analysis is advisably started with a more detailed description than given in [5, 7, 8] 
of the method used for calculations of cavitation streamline flows of a viscous fluid, ioe., 
for solutions of the following problem: the fluid is homogeneous, weightless, and incom- 
pressible, the flow is steady, planar or axially symmetric, the pressure in the cavity is 
constant, the cavity position in the body is assigned, i.e., the abscissas of its origin and 
its end xl, x2, as well as the Re value, the turbulence of the leading flow [9], and the de- 
pendence on wettability of the streamline boundary angle [3, 7]. It is required to find the 
shape of a cavity corresponding to o and We values, as well as the pressure on the surface 
of the streamlined body. 

The pressure in the cavity is related to the pressure in the fluid by the Laplace equa- 
tion 

Cp r ~ ~= 2• (1) 

(• is the curvature of the cavity boundary). The boundaries of the cavity and of the in- 
viscid flow coincided within mechanics of an ideal fluid; for the scheme of cavity enclosure 
selected the latter was determined from the boundary value problem for the velocity poten- 
tial 4, since Cp is related to the components of grad ~ by the Bernoulli integral; in this 
case the cavity shape is sought at the same time. In a viscous fluid the boundaries men- 
tioned are separated by a boundary layer, and the pressure at the cavity boundary is related 
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to the absolute value of the velocity of inviscid flow on the displaced body. The surface 
cross section S* can be obtained primarily by the streamline increment of the body and the 
cavity at the displacement thickness 6*. Similarly to the cavity boundary in an ideal fluid, 
the surface of the displaced body can be determined in calculating the inviscid flow, since 
it is part of the free boundary. Assigning on this boundary a velocity distribution f(S), 
denoting by R the distance from S* to the streamlined body, by so, si, sf, s 3 the arc coordi- 
nates on S* of the points having abscissas x0, xl, xf, x3, and by N and T the unit external 
normal and tangent to S*, one can formulate the following nonlinear problem with the purpose 
of searching R and the derivatives of ~, written down with the use of quantities depending 
on the boundary layer characteristics: 

A(D = 0; ( 2 )  

a m / 0 N  I o ,  = 0; ( 3 )  

om/oz '  I~(~,,,~) = - f (s); ( 4 )  

R(so) = ~*(so); ( 5 )  

dB(s~)/dT ---- dS*(s3)/dT; (6) 

dR(so)/dT = d6*(So)/dT; (7) 

[ g r a d O l - + V ~ , x 2 - [  - g 2 - + ~ .  ( 8 )  

H e r e  {x,  y} a r e  t h e  C a r t e s i a n  c o o r d i n a t e s  o f  p l a n a r  f l o w  ( a  h a l f - p l a n e  o f  m e r i d i o n a l  c r o s s  
section flow). The necessity of finding R from f values is related to the fact that neither 
the cavity shape nor the displacement on it are known ahead of time. The problems of calcu- 
lating the cavitation flow of an ideal fluid (2)-(8) are distinguished by the shape of the 
right-hand sides of Eqs. (4)-(7). To solve the problem (2)-(8) it is necessary to assign 
the values of 6*, d6*/dT for s = s o and s = s3, as well as the function f(s) within a single 
undetermined coefficient C o [as in mathematical problems of ideal cavitation similar to (2)- 
(8)]. However, 6*, d6*/dT, s o , s3, and f are unknown ahead of time, and depend on the bound- 
ary layer characteristics. The function f(s) which, according to experimental data, must 
have two portions decreasing over the separating zones and be practically constant over a 
large portion of the cavity (since there IxD[ ~ i, and usually We ~ i00), can be approxi- 
mated by a linear combination of given functions fl, f2 and undetermined coefficients f(s) = 
C o + Clfl(s) + Cfff(s). The functions fl, f2 are nonvanishing only within the first and sec- 
ond strong interactions, respectively, while their shapes are selected on the basis of ana- 
lyzing experimental data on pressure distributions. The undetermined coefficients C2, CI, 
C o m (i + o) ~ therefore depend implicitly on the lengths of the viscous separation zones. 

The boundary layer from the critical point to s o can be calculated by one of the known 
methods, such as that described in [9]. The values of 6" and of the width of pulse loss 6** 
are extrapolated through the first strong interaction zone by means of the Squire-Young equa- 
tion to the point s = sl, where f = C o , and one uses v 0 = u0 = 0 (u 0, v 0 are the components 
of fluid velocity at the cavity boundary). The boundary layer over the cavity is described 
by means of three relations: the van Karman equation 

U~d6**/dT--I- vo(U - -  u0) = O; ( 9 )  

t h e  P r a n d t l  e q u a t i o n  f o r  t h e  c a v i t y  b o u n d a r y ,  b e i n g  a s u r f a c e  o f  v a n i s h i n g  f r i c t i o n ,  

uoduo/dT = a(U - -  Uo)3/u6 * (io) 

and the longitudinal profile of the velocity component of the turbulent boundary layer, used 
in calculations of separated flows [6] 

u('q) = Uo -~- (U - -  Uo)(3~l 2 - -  2~13). (ii) 

Here q is the coordinate precipitated from the cavity boundary along the normal and referring 
to the width of the boundary layer; and a = const. To find 6* and 6** from system (9)-(11), 
integrating it from the point s = sl', one must know not only U = --a~/3T, but also v 0. The 
v 0 values are related to the time-averaged intensity of the inverse jet, and, consequently, 
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with c [5"] - the jump in 6" at x = x 2 (s = s2); in planar flow, in particular, ~vods Co [5"l. 

The simplest shape was selected for v 0 calculations: v 0 = C3(s - si'), C 3 = const. 
The s I and We values are determined in integrating (i) over the ordinates of the cavity 

boundary Yc: this second-order ordinary differential equation in Yc having four condi- 
tions, assigning Yc and dYc/dT at s = s I and s = i , due to which two parameters can be 
selected in the calculations. For s > s 2 6* is determined from (5), following which [5*] 
is found. 

The four decisive quantities CI, C2, so, ss are sought from local semiempirical separa- 
tion conditions and the associated boundary layer, corrected with the purpose of accounting 
for the effect of the large curvature of the flow boundaries in finite cavities and the 

associated high transverse velocities in the boundary layer, as well as from the continuity 
condition of dU/dT for s = s o . These conditions are [5, 6] 

6* dU 
U ~ % = --0.015; (12) 

= 

dU UD ( ~ dU~~ =0;  (14) 
d----~+ t , t~f f -~--UD 3"5 _We U~u 5 ~0 

~(~0+0) du(~ 0 0), (15) 

where B* i s  t h e  maximum c a v i t y  w i d t h ,  i . e . ,  t h e  d i f f e r e n c e  b e t w e e n  Yc and t h e  body o r d i n a t e s .  
C o n d i t i o n  (14)  was d e r i v e d  f o r  a l a m i n a r  l a y e r  in  f r o n t  o f  t h e  c a v i t y .  For  a t u r b u l e n t  
l a y e r  (14)  i s  r e p l a c e d  by t h e  c o n d i t i o n  sz  = so + 2 6 " ( s 0 )  [ 5 ] .  The c r i t e r i a  ( 1 3 ) ,  ( 1 4 ) ,  i n -  
t r o d u c e d  and u s e d  f o r  t h e  s m a l l  number  o f  p r e s e n t l y  known e x p e r i m e n t a l  d a t a  on b o u n d a r y  l a y -  
e r s  i n  c a v i t a t i o n  f l o w s ,  can  be r e f i n e d  in  t h e  f o l l o w i n g .  

Due t o  t h e  n o n l i n e a r i t y  o f  s y s t e m  ( 1 ) - ( 1 5 ) ,  t h e  c a l c u l a t i o n s  mus t  be c a r r i e d  o u t  by 
m u l t i p l e - l e v e l  s u c c e s s i v e  a p p r o x i m a t i o n s ,  whose  c o n v e r g e n c e  i s  a n a l y z e d  by t h e  i n v i s c i d  
v a l u e s  in  c o n d i t i o n  ( 4 ) ,  a s  w e l l  as  by t h e  c o n v e r g e n c e  o f  s u c c e s s i v e  v a l u e s  o f  o and log  We, 
o b t a i n e d  w i t h i n  t h e s e  a p p r o x i m a t i o n s .  

Each a p p r o x i m a t i o n  o f  t h e  u p p e r  l e v e l  c o n s i s t s  o f  c a l c u l a t i n g  t h e  s t r e a m l i n e  p o t e n t i a l  
o f  a d i s p l a c e d  body o f  g i v e n  s h a p e ,  c a l c u l a t i n g  t h e  b o u n d a r y  l a y e r ,  and o f  c o r r e c t i n g  t h e  
s h a p e  o f  t h e  d i s p l a c e d  body o v e r  t h e  c a v i t y  and s t r o n g  i n t e r a c t i o n  z o n e s .  W i t h i n  t h e  f i r s t  
a p p r o x i m a t i o n  U i s  d e t e r m i n e d  in  two s t a g e s :  i n i t i a l l y  d i r e c t l y  on t h e  s u r f a c e  o f  t h e  
s t r e a m l i n e d  body  (by  t h e  method  o f  [ 3 ] ) ,  w h i l e  f o r  t h e  p r o f i l e  one t a k e s  i n t o  a c c o u n t  t h e  
e f f e c t  o f  Re on t h e  v a l u e  o f  t h e  b u o y a n t  f o r c e  c o e f f i c i e n t  ( b y  means o f  t h e  c o r r e c t i o n  t o  
t h e  Cy v a l u e  d e s c r i b e d  in  [ 1 0 ] ,  p .  126,  s a t i s f y i n g  t h e  Z h u k o v s k i i - C h a p l y g i n  p o s t u l a t e ) ;  t h e n ,  
w i t h i n  t h e  f i r s t  a p p r o x i m a t i o n  ( and  o n l y  t h e n ) ,  t o  p a r t i a l l y  a c c o u n t  f o r  t h e  c a v i t y  e f f e c t  
on t h e  p r e s s u r e  g r a d i e n t  i n  t h e  b o u n d a r y  l a y e r  in  f r o n t  o f  i t ,  U i s  i n c r e a s e d  by 6U: 

s2 

l ~v($)d~; 
6U (s) = -h-- a, - ~ (16) 

$I 

s,j 

(17) 

Here Y(s) = (s - sl)~ -- s) ~ Since (17) is used only for arcs (sl, s2), the problem 
of behavior of F(s) at infinity is unimportant here. Equations (16), (17) determine the in- 
duction from a thin cavity, located on a body of arbitrary thickness and simulated by the 
Zhukovskii-Roshko scheme (or a scheme similar to it) in an ideal fluid. The corresponding 
boundary displacement of potential flow is sought from the equation 

d H : q + ~ ( ~ , )  o (18) 
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with the initial condition R(s I) = 0. The calculation of the boundary layer on the basis of 
one of the methods described in [9] can be done nonuniquely within each approximation, since 
the s o value is found from condition (14), containing the We value refined in the calcula- 
tion process. Simultaneously with so, C I is determined from (15). 

To find s 3 from (13) it is necessary to know the cavity shape. Assigning a trial value 
of ss, from Eqs. (6), (12) one must seek C O and C2, for which conditions (3), (4) are linear- 
ized on the boundary of the inviscid flow used for the calculation of U for s~ (s o , s3): 

; t(I) # 
( q  ) + C,i + C , / ,  + C.,_l., = U; ( 1 9 )  

d 
q* + '2 ~ (U,') = O, ( 20 ) 

where r is unknown perturbation in R, which must be determined by eliminating from Eqs. (19) 
and (20) the primarily low potential density q*. It is convenient to represent 8~/ST(q*) in 
the form of the sum 8~/ST(q*) = 0%;0T + 0%f0T / where the first term includes the con- 
tribution of the variation 6* of the boundary layer to 8~/8T on S* for s~ (So, s3), and the 
remaining two terms are the perturbation 8~/8T with respect to the variation in the ordi- 
nates of the displacement body for s > s o . The function J is the Cauchy integral of the 
density q*/2, while the derivative 8~2/8T for a planar, weakly twisted boundary is negligibly 
small in comparison with the remaining terms. Relationship (19) is a singular integral equa- 
tion determining the function q*(s) on the interval (s o , sa). The Cauchy integral is trans- 
formed so as to eliminate q*, which is possible when the boundedness condition of q* on (So, 
sa) is satisfied: 

S3 U (~) - -  C l . f  I (~) - -  (~,)f,, (~) - -  O(Pl  (~) - -  69(~2 (~,  qg*) 
.qC ~ = ~ - -  OT " OY 

8 0 
[ g - . , . )  (.% - ~)1o., 

dE. (21) 

Condition (21) satisfies relations (6), (7), and makes it possible to express C o in terms of 
q* and C 2. Therefore r, determined by integrating (20) with the initial condition (5), is a 
linear function of one undetermined coefficient C2: r(sa) = ~i + ~2C2 (~i, ~2 are con- 
stants). To calculate C2, we assume ahead of time equality of 6* and R + r for s = s3, and 
then (12) acquires the form: 

(t{ -1- % _t_ a.aC2)C.,d/,,/d T _[_ 0.015(Co -[- C,.,I2) = O. ( 2 2 )  

In what follows we use the smaller root of this quadratic equation in C 2. 

Following the determination of C 2 and, consequently, f and r, one can verify condition 
(13) and correct the s 3 value. If (13) is satisfied, then to calculate 6* and 6** for s > 
s o one uses U = f; the necessity of iterations in finding 6* and 6** is related to the deter- 
mination of [6*], since v 0 ~ [6*]. Calculations within each approximation determine Yc from 

the R and 6" values for s ~ (sl , s2). 

As an example of using the method described we show in Fig. 2 a comparison of plotted 
measurements of the experimental data of [ii] with an indicated measurement spread for an 8% 
symmetric profile with a parabolic tip for Re = 1.5.10 s with results of the dependences, 
with the calculated curve and the experimental results i corresponding to an attack angle 

= 4.2 ~ , 2 - ~ = 6.3 ~ , while la are the results of calculating ideal cavitation for ~ = 

4.2 ~ The abscissa x 2 in the dependences of Fig. 2 is traced along the chord from the lead- 
ing edge of the profile. Comparing these curves, it can be concluded that: to realize for 
the same ~ in a viscous fluid at a given profile a cavity of the same length as in the ideal 
case, it is necessary to enhance the angle of attack by nearly 1.5 times. 

The agreement between the calculated dependences i and 2 and experiment is better, but 
the computational procedure su$$ested is quite complicated: four-level approximations are 
used (to refine o, We, sa, and [6*]) for given {x I, x2}. For engineering calculations, in 
which it is usually required to assign not {x l, x2}, but {~, We}, it is still necessary to 
select {xl, x2} by successive approximations. Therefore, the analysis of simplified ver- 
sions of the theory is quite important. One of them was sufficiently effective for calcu- 
lations of supercavities behind bodies with smooth enclosures [7]; the boundary layer char- 
acteristics in it were calculated only up to s = s I , and their further variation was assumed 
to weakly affect the cavity sizes, for whose enclosure we used the generalized Ryabushinskii 
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scheme which is traditional in ideal cavitation. We further consider another simplification 
of the theory suggested, where in all calculations we put a = 0.03 and d~*/dT(s 3) = 0 in Eq. 

(10). 

When the body with cavitationless streamlines has a sharp and deep minimum of Cp, the 
position of the points so, s I is slightly changed with varying We and o. Therefore,-the 
effect of We on the cavity sizes drops sharply with increasing x 2 or s 2. This statement 
illustrates the results for a 4% segment profile at ~ = 2 ~ , shown in Fig. 2. The calcu- 
lated curve 3 and the experimental points of [12] correspond to Re = 106 , We = l0 s , curve 

6 4 
3a to Re = i0 , We = 2.10 , and curve 3b is the calculation of ideal cavitation wis the 
use of the generalized Ryabushinskii scheme. The insignificant difference in cavity sizes 
even for x~D -l > 0.i for We values differing by 5 times implies a weak effect on these 
sizes of the first strong interaction zone. In similar cases the flow analysis in this zone 
(following the iteration level in the calculations) can be omitted. 

One more possibility of simplifying the calculations is related to the use of the 
assumption of a thin cavity. For these cavitities 

~*<<x~-- x I (23) 

and, since the surfaces of the displacement body and of the streamlined body are close to 
each other, it seems admissible to restrict the treatment to a single external approximation 
in the problem and to single refinement of U by only one of Eqs. (16), (17). Omitting the 
relatively low-effect term ~q~2/~T in (19), (21), this approximation can be considered quasi- 
planar and quasilinear. Among them the Neumann problem (2), (3), (8) is solved within the 
exact statement for a streamlined body of three-dimensional flow; in particular, the cavita- 
tion calculation is carried out for a planar, weakly twisted beam in an inhomogeneous flow. 
In this approach it seems necessary to use only one approximation of the external level. 
The large computational advantages of the quasiplanar quasilinear approach in computer cal- 
culations are related to the fact that their most difficult part, the solution of the exter- 
ior Neumann problem, is possible to carry out only once for all the pairs of {xl, x2} values 
used, while for fixed Cy - this is also possible for all Re values, which, in comparison 
with the nonlinear theory, can cut on computer time by many times (depending on the number 
of variants: the higher the number of variants, the higher the economy in time). 

It must be shown, however, where this simplification leads. Comparison of the quasi- 
planar quasilinear and nonlinear theories for two bodies of revolution with substantial elon- 
gation with different front edges is shown in Fig. 3. Curves i, 2 were calculated for a body 
with a hemispherical front edge: line i corresponds to the quasilinear quasiplanar theory 
for Re 7 . . = i0 , la is the nonlinear theory for the same Re, and ib is the nonlinear theory for 
an ideal fluid (when using the generalized Ryabushinskii scheme). Also shown are the results 
for a body with a Swedish [i] front cap, already illustrated in Fig. i; the solid lines show 
the dependences on the cavitation number ratio x2D -I, while the dashed 2, 2b show the depend- 
ence on o of the ratio of cavity width B to the diameter of the body. Curves 2 correspond 
to the quasiplanar quasilinear theory for a viscous fluid with Re = I0 ~, We = 2.].05 , curve 
2a - the nonlinear theory for the same Re and We values, and curve 2b - the nonlinear theory 
for an ideal fluid. For B(o) the nonlinear and quasilinear theories provide for a viscous 
fluid coinciding results within the scale of Fig. 3. The origin of coordinates for bodies 
of revolution coincides with the origin of the cylindrical part, while xl < 0 for all {6, 
Re, We}. It can be established from the curves of Fig. 3 that the cavities considered in- 
deed satisfy condition (23). However, both the use of planar cross section and quasilinear- 
ization are capable of enhancing ~ for x 2 = const, which is also explained by the mutual 
position of lines 1 and la, as well as 2 and 2 . 
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The results represented in Fig. 3 imply that the quasiplanar quasilinear theory makes 
it possible to take into account the basic role of the effect of We and Re on the sizes of 
relatively short cavities. For large deviations of both versions from ideal cavitation of 
bodies of revolution these deviations are comparable with the measurement spread from the 
quite effective simpler theory - ideal cavitation. For cavities on planar profiles the de- 
pendences x2(o , ~) differ substantially in an ideal and viscous capillary fluid for any o. 
However, for long cavities (x2D -l ~ 0.5) a significant part of this deviation can be re- 
moved by introducing the correction to effect of Re recommended in [i0] into the dependence 
Cy(~). By using these corrections it is possible to reach satisfactory agreement with ex- 
periment not only in the cavity sizes, but also in finer characteristics, such as the dis- 
tribution of Cp on parts of the body close to the cavity. This assertion is verified by the 
comparisons shown in Fig. 4 between Cp measurements [13] on a Valkhner-7 profile with a 
chord length D = 0.08 m at Re = 106 and the calculated curves. Curve and point 1 correspond 
to ~ = -2 ~ , and curves and points 2 and 3 - to ~ = 3 ~ for different o. Finally, it must be 
noted that even the quasiplanar quasilinear theory makes it possible to explain complicated 
physical effects related to the effect of viscosity and capillarity on cavitation, such as 
the Arakeri-Acosta effect [4]. 

According to the long practice of observing development of cavitation, the cavities 
grow on well-streamlined bodies for any method of reducing o. Contradictory experiments [4] 
appeared in this practice: when a body with a hemispherical front cap of diameter D = 0.05 m 
was established as turbulizer, and for values Re = 2"10 5 and o = 0.45 a cavity was observed 
on it, but with increasing flow velocities, accompanied by reduction in o, the cavity ini- 
tially decreases and then vanishes altogether. Unusual for a body with a turbulizer is also 
an Re dependence of characteristic appearance of cavities on the body of critical cavitation 
number o i. This dependence is represented by the experimental points 1 in Fig. 5, and 
points 2 - the results of o i measurements on the same body without a turbulizer. 

The theory discussed can be used for determining o i in flows with low gas content: the 
dependence of o on the cavity length for fixed Re and We in stationary flows due to the 
effect of capillarity has a maximum for x2 - xl > 0; it is also used as o i for cavities asso- 
ciated to the body both in contemporary experiments [4] and in calculations [8]. Results of 
calculating o i by the quasiplanar quasilinear theory are shown by lines 1 and 2 in Fig. 5. 
The presence of a turbulizer was accounted for in the calculations by assigning the origin 
of the laminar-turbulent transition zone on the body at assigned points. Since even for a 
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body with a turbulizer there is reasonable agreement between calculations and experiments, 
on the basis of these calculations one can explain the Arakeri-Acosta effect. 

On the front part of the body used in experiment [4] there occurs a mild pressure mini- 
mum (part of the meridional cross section of this body is illustrated by curve i in Fig. 6, 
and 2 is part of the C D diagram for cavitationiess streamlines of this body). Below the flow 
and from the minimum o~ Cp there occurs an increase in dCp/dT. For relatively low Re, de- 
spite the presence of the-turbulizer the boundary layer in front of the cavity remains lami- 
nar, and its dominant zone of viscous separation remains in equilibrium only in regions of 
small positive dCp/dT, i.e., near the minimum of C~. For higher Re the cavity is completely 
located in a turbulent boundary layer and the origln of the separation zone must correspond 
to larger dCp/dT, which, as shown by calculations, for corresponding experimental conditions 
[4] cannot be generated by the inverse cavity effect on Cp in front of it. Therefore, for 
the body considered in a turbulent boundary layer the cavities must be displaced toward 
below the flow, into the high-pressure zone, as shown in Fig. 6, where curves 3-3b plot the 
cavity boundaries for the same value of o = 0.3, while boundary 3 corresponds to Re = 5.10 s, 
D = 0.05 m on a body with a turbulizer, 3a - the same Re and D values for a body without a 
turbulizer, and line 3b - Re = 107 , D = i m, i.e., the same conditions as for curves 1 and 
la in Fig. 3. 

Due to the effects mentioned above, for the same {o, Re, We} values one can observe 
cavitation on a body without a turbulizer, as well as its vanishing in its presence. For 
further increase in Re, since for the same body one must not vary Re and We independently, 
due to which with increasing Re there is incidental thinning of principal portions and a de- 
crease in minimal cavity lengths, the cavities can appear above the flow in the zone of 
smaller Cp (see Fig. 6), while the dependence of oi(Re) is again increasing and, as seen 
from Fig. 3, cavitation also exists for o > 0.6. 

The results represented make it possible to note that the quasiplanar quasilinear theory 
of cavitation flows of a viscous and capillary fluid can serve to describe streamlined bodies 
of smooth outlines in the partial cavitation regime. 

The authors are grateful to G. Yu. Stepanov for his interest in this study. 
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